A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration
نویسندگان
چکیده
As a promising alternative to autologous nerve grafts, tissue-engineered nerve grafts have been extensively studied as a way to bridge peripheral nerve defects and guide nerve regeneration. The main difference between autogenous nerve grafts and tissue-engineered nerve grafts is the regenerative microenvironment formed by the grafts. If an appropriate regenerative microenvironment is provided, the repair of a peripheral nerve is feasible. In this study, to mimic the body's natural regenerative microenvironment closely, we co-cultured Schwann cells (SCs) and adipose-derived stem cells (ADSCs) as seed cells and introduced them into a silk fibroin (SF)/collagen scaffold to construct a tissue-engineered nerve conduit (TENC). Twelve weeks after the three different grafts (plain SF/collagen scaffold, TENC, and autograft) were transplanted to bridge 1-cm long sciatic nerve defects in rats, a series of electrophysiological examinations and morphological analyses were performed to evaluate the effect of the tissue-engineered nerve grafts on peripheral nerve regeneration. The regenerative outcomes showed that the effect of treatment with TENCs was similar to that with autologous nerve grafts but superior to that with plain SF/collagen scaffolds. Meanwhile, no experimental animals had inflammation around the grafts. Based on this evidence, our findings suggest that the TENC we developed could improve the regenerative microenvironment and accelerate nerve regeneration compared to plain SF/collagen and may serve as a promising strategy for peripheral nerve repair.
منابع مشابه
Electrophysiological Study of Sciatic Nerve Regeneration Through Tubes Seeded with Schwann Cells
A B S T R A C TIntroduction: Peripheral nerve injury is a common disorder and leads to permanent neurological defects. Schwann cells have been shown to have nerve repair after being transplanted in peripheral nerve injury. The aim of this study was to determine the beneficial effect of allograft Schwann cells on electrophysiological outcome after transection of the sciatic nerve in rats.Methods...
متن کاملEvaluation of the Functional Recovery in Sciatic Nerve Injury following the Co-transplantation of Schwann and Bone Marrow Stromal Stem Cells in Rat
Introduction: Transplantation of bone marrow stromal cells (BMSCs) or Schwann cells (SCs) can increase axonal regeneration in peripheral nerve injuries. Based on our previous investigations, the goal of the present work was to examine the individual and synergistic effects of the two different cell types in sciatic nerve injury . We pursued to evaluate the effects of BMSCs and SCs co-transplant...
متن کاملStructural and functional improvement of snipped sciatic nerve after allograft injection of Schwann cells into fibrin scaffold
Background and Aim: Peripheral nerve injuries are among the most common types of injuries of the nervous system and are regarded as the main cause of disability. These injuries can lead to disorders in muscles movement and normal sense, and also painful neuropathy. Tissue engineering and stem cells therapy are among the treatment methods for these disorders. In this study we assessed sciatic ne...
متن کاملThe Long-term Effects of Uncultured Omental Adipose-derived Nucleated Cells Fraction and Bone-marrow Stromal Cells on Sciatic Nerve Regeneration
Objective- Adipose tissue is an appropriate source for isolation of cells with stem-cell–like properties. In the present long-term study, the effects of the omental adipose-derived nucleated cells (OADNCs) fraction were compared to those of the undifferentiated cultured bone marrow stromal cells (BMSCs) on sciatic nerve regeneration. Design- Experimental in vivo study. Animals- Fift...
متن کاملHealing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration
Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016